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In 1993, Rosalind C. Lee et al. found the first miRNA in 
nematodes.[1] Thereafter, additional miRNAs have been 

found in plants, green algae, viruses, and deeper clade ani-
mals.[2] MiRNAs are non-coding, conserved single-stranded 
sequences having an approximate length of 18–24 nucleo-
tides.[3] In the nucleus, miRNAs are transcribed from DNA 
sequences and processed to produce precursor miRNAs 
(pri-miRNAs). These pri-miRNAs are transported to the cy-
toplasm via exportin-5, where they are processed by Dicer 
into mature miRNAs and finally cut into miRNA/miRNA 
duplexes.[4-7] As carriers of genes encoding post-transcrip-
tional regulatory information, miRNAs have critical regula-
tory roles in cell growth, differentiation, development, and 
apoptosis in plants and animals.[8-10]

The involvement of miRNAs in human diseases was first 
convincingly proven in the 2002 study by Calin Dan Du-

mitru et al. This study demonstrated that miRNA-15 and 
miRNA-16 are downregulated in B cell chronic lympho-
cytic leukemias and have major regulatory effects on this 
cancer.[11] With the deepening of miRNA research in the 
recent decades, the role of miRNA in human diseases has 
become increasingly clear. For example, miR-217 inhibits 
the proliferation, migration, and invasion of hepatocellu-
lar carcinoma cells by targeting mitogen-activated protein 
kinase 1(MAPK1) and is negatively correlated with MAPK1.
[12] MiRNA-155 possibly participates in atopic dermatitis 
pathogenesis by regulating Th17 cell differentiation and 
function.[13] MiR-181 may be a new crucial regulator of 
cisplatin-resistant non-small cell lung cancer.[14] Therefore, 
investigating about miRNAs is meaningful for revealing 
the mechanism underlying disease occurrence at a deeper 
level.

Being a carrier of genes encoding post-transcriptional regulatory information, miRNA-433 has a crucial regulatory role 
in cell growth and development in animals and plants. We found that miRNA-433 is associated with 19 cancers, with 
its expression significantly downregulated in 17 cancers. MiRNA-433 overexpression can inhibit the proliferation, mi-
gration, and invasion of cancer cells. These include cells of cholangiocarcinoma, liver cancer, pancreatic cancer, breast 
cancer, etc. MiRNA-433 suppresses the expression of this target gene by binding to the specific seed sequence of the 
downstream target gene Notably, the seed sequences of different downstream target genes that miRNA-433 binds to 
are the same. In this article, we discuss in detail the mechanism of miRNA-433 in human diseases and provide ideas for 
further research on its biological functions.
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MiRNA-433, located on chromosome 14, was first reported 
by Guisheng Song et al. in 2008. They revealed that miR-
NA-433 was coupled with miRNA-127, and their forma-
tion was regulated by nuclear receptors.[15, 16] MiRNA-433 
has a key regulatory role in human diseases. According to 
Ying Ma et al.’s study, miR-433 inhibited the growth, inva-
sion, and migration of oral squamous carcinoma cells by 
targeting histone deacetylase 6(HDAC6).[17] T. Liang et al. 
reported that miRNA-433 inhibited the migration and in-
vasion of ovarian cancer cells by targeting Notch1.[18] MiR-
433 regulated myocardial ischemia reperfusion injury by 
targeting N-myc downstream regulated gene4(NDRG4) 
and modulating the Phosphoinositide 3-kinase/protein ki-
nase B (PI3K/Akt) signal pathway.[19] Hus, further studying 
the mechanism of miRNA-433 in diseases is of great signifi-
cance. This paper summarizes and investigates the expres-
sion, function, target genes, and interacting molecules of 
miR-433 and its role in human diseases.

MiRNA-433 and Cancers
MiRNA-433-3p and miRNA-433-5p as miRNA-433 mature 
bodies, they are similar in many biological functions. After 
summarizing miRNA-433- and cancer-related literature, 
we found that miRNA-433 is associated with 19 cancers, 
with its expression significantly downregulated in 17 can-
cers (highlighted in black font) (Fig. 1). At the same time, 
we downloaded the expression data of miRNA-433 in pan 
cancer and further analyzed and visualized it through R 
Language version 4.2.1 (Fig. 2). We divided the main miR-
NA-433 functions in cancer as follows:

Inhibit the Proliferation, Invasion, and Migration of 
Cancer Cells and Promote Apoptosis

LiHua Guo et al. found that miR-433 inhibited cell prolif-

eration, migration, and invasion, and cell cycle progression 
by directly targeting Kirsten rat sarcoma viral oncogene 
homologue(KRAS) in gastric cancer.[20] They thus opened 
the prelude for investigating the tumor suppressor role of 
miRNA-433. Since then, studies have found the anti-tumor 
effects of miRNA-433 in many cancers, including inhibition 
of cell proliferation, migration, and invasion and promotion 
of apoptosis. For example, ChangYan Liang et al. revealed 
that miRNA-433 inhibits cell proliferation and invasion 
and increases apoptosis in cervical cancer by directly tar-
geting metadherin (MTDH).[21] In 2018, Qizhong Shi et al. 
found that miR-433 overexpression inhibits the prolifera-
tion, migration, and invasion of esophageal cancer cells by 
preventing growth factor receptor-bound protein 2(GRB2) 
expression, thereby suggesting that miR-433 can be tar-
geted for esophageal cancer treatment.[22] Jing Zhang et 
al. found that miR-433 could inhibit the proliferation, mi-
gration, and invasion of glioma cells by targeting ajuba 
LIM protein(AJUBA) expression.[23] Of course, the antitumor 
effect of miRNA-433 is not reflected only in the aforemen-
tioned cancers. Cancers in which miRNA-433 acts as a tu-
mor suppressor are listed in Table 1.

Figure 1. MiRNA-433 and related cancers (The black font indicates 
that the expression of miRNA is down-regulated in this cancer, and 
the red font indicates that the expression of miRNA in this cancer is 
unknown).

Figure 2. The expression of miRNA-433 in pan cancer. (a: miRNA-433-
3p, b: miRNA-433-5p).
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Chemotherapy

In 2014, Karolina Weiner Gorzel et al. demonstrated for the 
first time that the chemosensitivity of paclitaxel is related 
to the miR-433 expression level. MiR-433 confers drug resis-
tance to paclitaxel in ovarian cancer cells. At the same time, 
it can functionally inactivate Rb protein, thereby disrupting 
cell cycle progression and inducing cellular senescence.[24] 
In 2018, Jianhua Yu et al. showed that miR-433 expression 
enhanced the resistance of gallbladder cancer cells to gem-

citabine.[25] Researchers have confirmed the same chemo-
resistance in gastric cancer[26, 27] and lung cancer.[28] These 
findings provide a basis for the potential use of miR-433 as 
a biomarker for chemosensitivity evaluation.

Foci Site, Pathological Grade, and Prognosis are 
Correlated

Hongchun Luo et al. first proposed that miRNA-433 is 
downregulated in gastric cancer and regulates GRB2, which 

Table 1. Functions of miRNA-433 in cancers and molecules that interact with miRNA-433

Type of cancers Upstream factors 3p/5p Target genes Functions References

Ovarian cancer / / Notch1 Migration , Invasion [18]

Cervical cancer /Circ-ATP8A2 / AKT/β-catenin, EGFR Proliferation, Invasion, [21, 33] 
     Apoptosis
Renal cancer LncRNAPCGEM1 3p FGF2 Proliferation, Invasion, [34] 
     Apoptosis
Breast cancer LncRNAGNAS-AS1  3p AKT3,Rap1a/MAPK,  Proliferation, Migration,  [32, 35-37]

    GATA3 Viability, Apoptosis 
     Clinical staging and 
     degree of differentiation
Lung cancer Hsa_circ_0010235, LncRNAPCGEM1, 3p/5p  TIPRL,WTAP,MAPK8,  Proliferation, Autophagy,  [28, 38-42] 
  CircMED13L_012, Circ_0011292  TMED5,Smad2,CHEK1 Invasion, Apoptosis
Liver cancer KDM5A,LINC01006 3p FXYD3-PI3K/AKT,  Diagnosis, Proliferation, [43-47] 
    CBX3,CREB1,PAK4 Migration, Invasion, 
     Tumor foci formation
Gastric carcinoma / 3p KRAS Proliferation, Migration,  [20, 26, 30, 31] 
     Invasion, Apoptosis, 
     Prognosis, Tumor site, 
     Pathological grade, 
     Chemotherapy
Nasopharyngeal carcinoma / / SCD1 Proliferation, Migration, [48] 
     lipid accumulation
Pancreatic cancer LINC00657 / PAK4 Proliferation, Apoptosis [49]

Retinoblastoma / / Notch1/PAX6 Proliferation, Migration, [50] 
     Invasion, Apoptosis
Osteosarcoma Circ_0002137, SNHG14 3p IGF1R ,FBXO22 Proliferation, Invasion, [51, 52] 
     Apoptosis
Colorectal cancer LINC00460  3p HOXA1,CyclinD1/CDK4  Proliferation, Invasion,  [53-57]

    CREB1/CCAR1/JNK1, viability, Apoptosis 
    MACC1,ANXA2
Cholangiocarcinoma / / HDAC6 Proliferation, Migration, [58] 
     Cilia formation
Esophageal cancer CircLPAR3, Circ_0023984 3p HMGB1,REV3L,GRB2 Proliferation, Migration, [22, 59, 60] 
     Invasion
Bladder cancer CircRIMS1, CircMBOAT2 3p CREB1/c-Met,CCAR1 EMT, Proliferation,  [61-63] 
     Migration, Invasion, 
     Tumor growth and 
     metastasis
Glioma CircMMP1 3p SMC4,HMGB3 ,AJUBA Proliferation, Migration, [23, 64, 65] 
     Invasion, Apoptosis
Oral cancer Linc01234 3p HDAC6,PAK4,GRB2  Proliferation, Migration, [17, 66, 67] 
     Invasion, Apoptosis 
Prostate cancer / / / Distinguishing the [68, 69] 
     degree of malignancy
Gallbladder carcinoma / / cyclin M Chemoresistance [25]
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is involved in the molecular pathogenesis of this cancer.[29] 
In the same year, Tetsuya Ueda et al. reverified that miR-
NA-433 expression is downregulated in gastric cancer, The 
miRNA-433 expression level was closely correlated with 
gastric cancer prognosis, and the survival rate was lower 
in patients with low miRNA-433 expression than in those 
with high miRNA-433 expression.[30] In 2014, Ou Yangyang 
et al. reported that miRNA-433 expression correlates with 
the foci site and pathological grade of gastric cancer. The 
pathological grade of patients with high miRNA-433 ex-
pression was significantly better than that of those with 
low miRNA-433 expression.[31] MiR-433 expression in breast 
cancer was positively related to the differentiation degree 
and negatively correlated with the clinical stage.[32] These 
studies have suggested that miRNA-433 is an important 
player in the pathogenesis of some cancers. These findings 
possibly offer a new direction for cancer treatment.

MiRNA-433 and Other Diseases
With increase in in-depth research, the role of miNRA-433 
in human diseases is gradually clear. In addition to cancer, 
miNRA-433 has a crucial role in non-cancer (Table 2). By 
summarizing the published relevant literature, we found 
that miRNA-433 is also a crucial player in the regulation of 
fibrosis, osteoblast differentiation, and inflammatory re-
sponses.

Fibrosis Promotion

In 2013, Rong Li et al. proposed that miR-433 is involved 
in renal fibrosis. Overexpression of miR-433 promotes 
transforming growth factor-β1-induced fibrosis and may 
be a potential target for tissue fibrosis treatment.[70] A 
study reported that miR-433 could directly target gangli-
on cell layer (GCL) and promote fibrosis by reducing the 
glutathione(GSH) level.[71] Clarifying the role of miRNAs 

Table 2. MiRNA-433 and other diseases (except cancers)

Disease classification Upstream factors  Target genes MiRNA-433 functions

Nervous system
 Alzheimer disease / JAK2 Restores Aβ inhibition of human neuroblastoma cell viability[79]

  CIRC-HUWE1 Fgf7 Mitigates cellular neuronal damage by Fgf7[80]

 Parkinson disease / FGF20 Affects α-synuclein expression by inhibiting FGF20[81]

 / / Cdk12 Regulates neuronal growth by promoting autophagy and inhibiting cell  
    proliferation[82]

 / / HIF-1α Inhibition of proliferation and migration of vascular endothelial cells and  
    neurons by HIF-1α[83]

 Spinal cord injury / MAPK1 Protects motor dysfunction and inflammatory responses after spinal cord  
    injury[77]

Endocrine system
 Diabetes mellitus / COX2 Protective effect on pancreatic beta cells cultured with high glucose[84]

Cardiovascular system
 Myocardial damage Nobiletin SIRT1 Inhibits SIRT1 expression and affects cardiomyocyte hypoxia/ 
    reoxygenation injury[85]

  / NDRG4 Regulates myocardial ischemia-reperfusion injury by inhibiting NDRG4[19]

 Cardiac fibrosis / AZIN1/JNK1 Promotes the proliferative effect of cardiac fibroblasts[72]

Digestive system
 Liver fibrosis LncRNAGAS5 TLR10 Downregulation of miR-433 ameliorates liver fibrosis by targeting TLR10[86]

 Inflammatory bowel disease / MAPK8 Acts as a protective agent for inflammatory bowel disease[78]

Skeletal system / Runx2 Inhibition of BMP2-induced osteoblast differentiation by Runx2[75]

  / Igf1/ Hif1α Regulates circadian clocks and osteoblastic genes in vivo[87]

  / / Negative regulators of osteoblast maturation in vitro[76]

  / MAPK/ Wnt Negative regulators of bone formation in vivo[88]

  / Dkk1 Promotes osteoblast differentiation by inhibiting Dkk1 expression[89]

Others
 Polycystic ovarian syndrome HOTAIRM1 PIK3CD Increases the proliferative capacity of granulosa cells and reduces  
    apoptosis[90]

 Depressive symptoms / FGF20 Regulates FGF20 gene expression[91]

 Acute vertigo / / As a marker for differentiating posterior circulation stroke from peripheral  
    vertigo[92]
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in renal fibrosis may allow the early diagnosis and treat-
ment of renal diseases. The presence of cardiac fibrosis 
was strongly related to increased miR-433 expression. Anti-
zyme Inhibitor 1(AZIN1) is a miR-433-mediated target gene 
in cardiac fibrosis.[72] In conclusion, miR-433 may represent 
a new treatment approach for fibrosis.[73]

Osteoblast Differentiation

Delphine Simon et al. first proposed the role of miRNA-433 
in bone diseases in 2010. Their study revealed that miR-
NA-433 is related to X-linked chondrodysplasia and inhibits 
HDAC6 expression. MiRNA-433 is probably the molecular 
cause of X-linked chondrodysplasia.[74] A study showed that 
miR-433 inhibits BMP2-induced osteoblast differentiation 
by reducing the Runt-related transcription factor 2 (Runx2) 
transcription level. MiR-433 is suggested to be crucial for 
osteoblast differentiation.[75] Neha S. Dole, M.S et al. con-
firmed that miR-433 expression was negatively correlated 
with osteoblast differentiation, and the miR-433 level was 
the lowest when osteoblast differentiation level was the 
highest.[76] These studies have sufficiently proved that miR-
NA-433 has a crucial role in bone diseases, which is worthy 
of further exploration.

Inflammation

MiRNA-433 expression was significantly downregulated in 
the serum of patients and mice with spinal cord injury. By 
targeting MAPK1, miRNA-433 protected motor dysfunc-
tion and inflammatory responses after spinal cord injury.
[77] MiR-433-3p is delivered to lipopolysaccharide-induced 
macrophages and targets MAPK8, leading to the inhibition 
of the MAPK signaling pathway and decreased production 
of inflammatory cytokines. MiRNA-433 restores the dynam-
ic balance of the intestinal microenvironment by regulat-
ing inflammatory factor aggregation.[78] These findings may 
provide a theoretical basis for inflammation treatment.

Conclusion
Through literature summary, we realized that the down-
stream target is the key for miRNA-433’s major regula-
tory role in diseases. MiRNA-433 inhibits the expression of 
downstream target genes by combining with specific seed 
sequences of these genes. Notably, the seed sequences 
of miRNA-433 binding to different downstream target 
genes are the same. A seed sequence of miRNA-433 was 
3'... UAGUACU... 5'. Current research shows that all down-
stream targets of miRNA-433 are combined with this seed 
sequence. The downstream target genes only act as me-
diators during miRNA-433 biological function. Figure 3 de-
picts the reported targets of miRNA-433 involved in injury, 
inflammation, proliferation, apoptosis, metastasis, fibrosis, 

bone differentiation, angiogenesis, and chemoresistance. 
As shown in Figure 3, we can clearly see that a target gene 
can have multiple functions, and a function can also have 
multiple targets. Although the specific action mechanism 
remains unclear, we provided evidence for disease treat-
ment and diagnosis by studying the miRNA-433 and target 
gene relationship, especially in cancer. 

The ability of miRNAs to target multiple genes is highly 
worthy of in-depth research. However, a specific miRNA 
target may include both oncogenes and tumor suppressor 
genes, as well as some targets unrelated to cancer, which 
makes the development of selective miRNA targeted gene 
therapy possible.Although great progress has been made 
in this field, further improvement is still required. If these 
miRNAs targets have crucial regulatory effects on cancer 
cell proliferation, migration, and invasion, we can target in-
hibition or promotion of these miRNAs to promote tumor 
regression. The use of this type of therapy represents a new 
approach to addressing some of the medically more chal-
lenging diseases. Although many basic research involving 
miRNA therapies have been conducted over the years, only 
a small proportion of miRNA therapies have entered into 
clinical development so far. One of the biggest challenges 
in developing miRNA-based therapies is determining the 
best matched miRNAs for each disease, as only the best 
matched miRNAs can minimize potential toxicity and tar-
get effects.
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